人臉識(shí)別,是基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部識(shí)別的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。
發(fā)展歷史
人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期,并且以美國(guó)、德國(guó)和日本的技術(shù)實(shí)現(xiàn)為主;人臉識(shí)別系統(tǒng)成功的關(guān)鍵在于是否擁有尖端的核心算法,并使識(shí)別結(jié)果具有實(shí)用化的識(shí)別率和識(shí)別速度;“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),同時(shí)需結(jié)合中間值處理的理論與實(shí)現(xiàn),是生物特征識(shí)別的最新應(yīng)用,其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向強(qiáng)人工智能的轉(zhuǎn)化。
技術(shù)特點(diǎn)
傳統(tǒng)的人臉識(shí)別技術(shù)主要是基于可見(jiàn)光圖像的人臉識(shí)別,這也是人們熟悉的識(shí)別方式,已有30多年的研發(fā)歷史。但這種方式有著難以克服的缺陷,尤其在環(huán)境光照發(fā)生變化時(shí),識(shí)別效果會(huì)急劇下降,無(wú)法滿足實(shí)際系統(tǒng)的需要。解決光照問(wèn)題的方案有三維圖像人臉識(shí)別,和熱成像人臉識(shí)別。但這兩種技術(shù)還遠(yuǎn)不成熟,識(shí)別效果不盡人意。
迅速發(fā)展起來(lái)的一種解決方案是基于主動(dòng)近紅外圖像的多光源人臉識(shí)別技術(shù)。它可以克服光線變化的影響,已經(jīng)取得了卓越的識(shí)別性能,在精度、穩(wěn)定性和速度方面的整體系統(tǒng)性能超過(guò)三維圖像人臉識(shí)別。這項(xiàng)技術(shù)在近兩三年發(fā)展迅速,使人臉識(shí)別技術(shù)逐漸走向?qū)嵱没?
人臉與人體的其它生物特征(指紋、虹膜等)一樣與生俱來(lái),它的唯一性和不易被復(fù)制的良好特性為身份鑒別提供了必要的前提,與其它類型的生物識(shí)別比較人臉識(shí)別具有如下特點(diǎn):
非強(qiáng)制性:用戶不需要專門配合人臉采集設(shè)備,幾乎可以在無(wú)意識(shí)的狀態(tài)下就可獲取人臉圖像,這樣的取樣方式?jīng)]有“強(qiáng)制性”;
非接觸性:用戶不需要和設(shè)備直接接觸就能獲取人臉圖像;
并發(fā)性:在實(shí)際應(yīng)用場(chǎng)景下可以進(jìn)行多個(gè)人臉的分揀、判斷及識(shí)別;
除此之外,還符合視覺(jué)特性:“以貌識(shí)人”的特性,以及操作簡(jiǎn)單、結(jié)果直觀、隱蔽性好等特點(diǎn)。
技術(shù)流程
人臉識(shí)別系統(tǒng)主要包括四個(gè)組成部分,分別為:人臉圖像采集及檢測(cè)、人臉圖像預(yù)處理、人臉圖像特征提取以及匹配與識(shí)別。
人臉圖像采集及檢測(cè)
人臉圖像采集:不同的人臉圖像都能通過(guò)攝像鏡頭采集下來(lái),比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。
人臉檢測(cè):人臉檢測(cè)在實(shí)際中主要用于人臉識(shí)別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測(cè)就是把這其中有用的信息挑出來(lái),并利用這些特征實(shí)現(xiàn)人臉檢測(cè)。
主流的人臉檢測(cè)方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來(lái)分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。
人臉檢測(cè)過(guò)程中使用Adaboost算法挑選出一些最能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測(cè)速度。
人臉圖像預(yù)處理
人臉圖像預(yù)處理:對(duì)于人臉的圖像預(yù)處理是基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并最終服務(wù)于特征提取的過(guò)程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對(duì)它進(jìn)行灰度校正、噪聲過(guò)濾等圖像預(yù)處理。對(duì)于人臉圖像而言,其預(yù)處理過(guò)程主要包括人臉圖像的光線補(bǔ)償、灰度變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。
人臉圖像特征提取
人臉圖像特征提取:人臉識(shí)別系統(tǒng)可使用的特征通常分為視覺(jué)特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取就是針對(duì)人臉的某些特征進(jìn)行的。人臉特征提取,也稱人臉表征,它是對(duì)人臉進(jìn)行特征建模的過(guò)程。人臉特征提取的方法歸納起來(lái)分為兩大類:一種是基于知識(shí)的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法。
基于知識(shí)的表征方法主要是根據(jù)人臉器官的形狀描述以及他們之間的距離特性來(lái)獲得有助于人臉?lè)诸惖奶卣鲾?shù)據(jù),其特征分量通常包括特征點(diǎn)間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構(gòu)成,對(duì)這些局部和它們之間結(jié)構(gòu)關(guān)系的幾何描述,可作為識(shí)別人臉的重要特征,這些特征被稱為幾何特征?;谥R(shí)的人臉表征主要包括基于幾何特征的方法和模板匹配法。
人臉圖像匹配與識(shí)別
人臉圖像匹配與識(shí)別:提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,當(dāng)相似度超過(guò)這一閾值,則把匹配得到的結(jié)果輸出。人臉識(shí)別就是將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷。這一過(guò)程又分為兩類:一類是確認(rèn),是一對(duì)一進(jìn)行圖像比較的過(guò)程,另一類是辨認(rèn),是一對(duì)多進(jìn)行圖像匹配對(duì)比的過(guò)程。
識(shí)別算法
人臉識(shí)別
一般來(lái)說(shuō),人臉識(shí)別系統(tǒng)包括圖像攝取、人臉定位、圖像預(yù)處理、以及人臉識(shí)別(身份確認(rèn)或者身份查找)。系統(tǒng)輸入一般是一張或者一系列含有未確定身份的人臉圖像,以及人臉數(shù)據(jù)庫(kù)中的若干已知身份的人臉圖象或者相應(yīng)的編碼,而其輸出則是一系列相似度得分,表明待識(shí)別的人臉的身份。
人臉識(shí)別算法分類
基于人臉特征點(diǎn)的識(shí)別算法(Feature-based recognition algorithms)。
基于整幅人臉圖像的識(shí)別算法(Appearance-based recognition algorithms)。
基于模板的識(shí)別算法(Template-based recognition algorithms)。
利用神經(jīng)網(wǎng)絡(luò)進(jìn)行識(shí)別的算法(Recognition algorithms using neural network)。
神經(jīng)網(wǎng)絡(luò)識(shí)別
基于光照估計(jì)模型理論
提出了基于Gamma灰度矯正的光照預(yù)處理方法,并且在光照估計(jì)模型的基礎(chǔ)上,進(jìn)行相應(yīng)的光照補(bǔ)償和光照平衡策略。
優(yōu)化的形變統(tǒng)計(jì)校正理論
基于統(tǒng)計(jì)形變的校正理論,優(yōu)化人臉姿態(tài);強(qiáng)化迭代理論
強(qiáng)化迭代理論是對(duì)DLFA人臉檢測(cè)算法的有效擴(kuò)展;
獨(dú)創(chuàng)的實(shí)時(shí)特征識(shí)別理論
該理論側(cè)重于人臉實(shí)時(shí)數(shù)據(jù)的中間值處理,從而可以在識(shí)別速率和識(shí)別效能之間,達(dá)到最佳的匹配效果
識(shí)別數(shù)據(jù)
人臉識(shí)別需要積累采集到的大量人臉圖像相關(guān)的數(shù)據(jù),用來(lái)驗(yàn)證算法,不斷提高識(shí)別準(zhǔn)確性,這些數(shù)據(jù)諸如A Neural Network Face Recognition Assignment(神經(jīng)網(wǎng)絡(luò)人臉識(shí)別數(shù)據(jù))、orl人臉數(shù)據(jù)庫(kù)、麻省理工學(xué)院生物和計(jì)算學(xué)習(xí)中心人臉識(shí)別數(shù)據(jù)庫(kù)、埃塞克斯大學(xué)計(jì)算機(jī)與電子工程學(xué)院人臉識(shí)別數(shù)據(jù)等。
配合程度
現(xiàn)有的人臉識(shí)別系統(tǒng)在用戶配合、采集條件比較理想的情況下可以取得令人滿意的結(jié)果。但是,在用戶不配合、采集條件不理想的情況下,現(xiàn)有系統(tǒng)的識(shí)別率將陡然下降。比如,人臉比對(duì)時(shí),與系統(tǒng)中存儲(chǔ)的人臉有出入,例如剃了胡子、換了發(fā)型、多了眼鏡、變了表情都有可能引起比對(duì)失敗。
優(yōu)勢(shì)困難
優(yōu)勢(shì)
人臉識(shí)別的優(yōu)勢(shì)在于其自然性和不被被測(cè)個(gè)體察覺(jué)的特點(diǎn)。
所謂自然性,是指該識(shí)別方式同人類(甚至其他生物)進(jìn)行個(gè)體識(shí)別時(shí)所利用的生物特征相同。例如人臉識(shí)別,人類也是通過(guò)觀察比較人臉區(qū)分和確認(rèn)身份的,另外具有自然性的識(shí)別還有
虹膜識(shí)別
語(yǔ)音識(shí)別、體形識(shí)別等,而指紋識(shí)別、虹膜識(shí)別等都不具有自然性,因?yàn)槿祟惢蛘咂渌锊⒉煌ㄟ^(guò)此類生物特征區(qū)別個(gè)體。
不被察覺(jué)的特點(diǎn)對(duì)于一種識(shí)別方法也很重要,這會(huì)使該識(shí)別方法不令人反感,并且因?yàn)椴蝗菀滓鹑说淖⒁舛蝗菀妆黄垓_。人臉識(shí)別具有這方面的特點(diǎn),它完全利用可見(jiàn)光獲取人臉圖像信息,而不同于指紋識(shí)別或者虹膜識(shí)別,需要利用電子壓力傳感器采集指紋,或者利用紅外線采集虹膜圖像,這些特殊的采集方式很容易被人察覺(jué),從而更有可能被偽裝欺騙。
困難
人臉識(shí)別被認(rèn)為是生物特征識(shí)別領(lǐng)域甚至人工智能領(lǐng)域最困難的研究課題之一。人臉識(shí)別的困難主要是人臉作為生物特征的特點(diǎn)所帶來(lái)的。
相似性
人臉類似性
不同個(gè)體之間的區(qū)別不大,所有的人臉的結(jié)構(gòu)都相似,甚至人臉器官的結(jié)構(gòu)外形都很相似。這樣的特點(diǎn)對(duì)于利用人臉進(jìn)行定位是有利的,但是對(duì)于利用人臉區(qū)分人類個(gè)體是不利的。
易變性
人臉的外形很不穩(wěn)定,人可以通過(guò)臉部的變化產(chǎn)生很多表情,而在不同觀察角度,人臉的視覺(jué)圖像也相差很大,另外,人臉識(shí)別還受光照條件(例如白天和夜晚,室內(nèi)和室外等)、人臉的很多遮蓋物(例如口罩、墨鏡、頭發(fā)、胡須等)、年齡等多方面因素的影響。
在人臉識(shí)別中,第一類的變化是應(yīng)該放大而作為區(qū)分個(gè)體的標(biāo)準(zhǔn)的,而第二類的變化應(yīng)該消除,因?yàn)樗鼈兛梢源硗粋€(gè)個(gè)體。通常稱第一類變化為類間變化(inter-class difference),而稱第二類變化為類內(nèi)變化(intra-class difference)。對(duì)于人臉,類內(nèi)變化往往大于類間變化,從而使在受類內(nèi)變化干擾的情況下利用類間變化區(qū)分個(gè)體變得異常困難。
主要用途
人臉識(shí)別主要用于身份識(shí)別。由于視頻監(jiān)控正在快速普及,眾多的視頻監(jiān)控應(yīng)用迫切需要一種遠(yuǎn)距離、用戶非配合狀態(tài)下的快速身份識(shí)別技術(shù),以求遠(yuǎn)距離快速確認(rèn)人員身份,實(shí)現(xiàn)智能預(yù)警。人臉識(shí)別技術(shù)無(wú)疑是最佳的選擇,采用快速人臉檢測(cè)技術(shù)可以從監(jiān)控視頻圖象中實(shí)時(shí)查找人臉,并與人臉數(shù)據(jù)庫(kù)進(jìn)行實(shí)時(shí)比對(duì),從而實(shí)現(xiàn)快速身份識(shí)別。
應(yīng)用前景
生物識(shí)別技術(shù)已廣泛用于政府、軍隊(duì)、銀行、社會(huì)福利保障、電子商務(wù)、安全防務(wù)等領(lǐng)域。例如,一位儲(chǔ)戶走進(jìn)了銀行,他既沒(méi)帶銀行卡,也沒(méi)有回憶密碼就徑直提款,當(dāng)他在提款機(jī)上提款時(shí),一臺(tái)攝像機(jī)對(duì)該用戶的眼睛掃描,然后迅速而準(zhǔn)確地完成了用戶身份鑒定,辦理完業(yè)務(wù)。這是美國(guó)德克薩斯州聯(lián)合銀行的一個(gè)營(yíng)業(yè)部中發(fā)生的一個(gè)真實(shí)的鏡頭。而該營(yíng)業(yè)部所使用的正是現(xiàn)代生物識(shí)別技術(shù)中的“虹膜識(shí)別系統(tǒng)”。此外,美國(guó)“9.11”事件后,反恐怖活動(dòng)已成為各國(guó)政府的共識(shí),加強(qiáng)機(jī)場(chǎng)的安全防務(wù)十分重要。美國(guó)維薩格公司的臉像識(shí)別技術(shù)在美國(guó)的兩家機(jī)場(chǎng)大顯神通,它能在擁擠的人群中挑出某一張面孔,判斷他是不是通緝犯。
當(dāng)前社會(huì)上頻繁出現(xiàn)的入室偷盜、搶劫、傷人等案件的不斷發(fā)生,鑒于此種原因,防盜門開始走進(jìn)千家萬(wàn)戶,給家庭帶來(lái)安寧;然而,隨著社會(huì)的發(fā)展,技術(shù)的進(jìn)步,生活節(jié)奏的加速,消費(fèi)水平的提高,人們對(duì)于家居的期望也越來(lái)越高,對(duì)便捷的要求也越來(lái)越迫切,基于傳統(tǒng)的純粹機(jī)械設(shè)計(jì)的防盜門,除了堅(jiān)固耐用外,很難快速滿足這些新興的需求:便捷,開門記錄等功能。人臉識(shí)別技術(shù)已經(jīng)得到廣泛的認(rèn)同,但其應(yīng)用門檻仍然很高:技術(shù)門檻高(開發(fā)周期長(zhǎng)),經(jīng)濟(jì)門檻高(價(jià)格高)。
人臉識(shí)別產(chǎn)品已廣泛應(yīng)用于金融、司法、軍隊(duì)、公安、邊檢、政府、航天、電力、工廠、教育、醫(yī)療及眾多企事業(yè)單位等領(lǐng)域。隨著技術(shù)的進(jìn)一步成熟和社會(huì)認(rèn)同度的提高,人臉識(shí)別技術(shù)將應(yīng)用在更多的領(lǐng)域。
1、企業(yè)、住宅安全和管理。如人臉識(shí)別門禁考勤系統(tǒng),人臉識(shí)別防盜門等。
2、電子護(hù)照及身份證。中國(guó)的電子護(hù)照計(jì)劃公安部一所正在加緊規(guī)劃和實(shí)施。
3、公安、司法和刑偵。如利用人臉識(shí)別系統(tǒng)和網(wǎng)絡(luò),在全國(guó)范圍內(nèi)搜捕逃犯。
4、自助服務(wù)。
5、信息安全。如計(jì)算機(jī)登錄、電子政務(wù)和電子商務(wù)。在電子商務(wù)中交易全部在網(wǎng)上完成,電子政務(wù)中的很多審批流程也都搬到了網(wǎng)上。而當(dāng)前,交易或者審批的授權(quán)都是靠密碼來(lái)實(shí)現(xiàn),如果密碼被盜,就無(wú)法保證安全。但是使用生物特征,就可以做到當(dāng)事人在網(wǎng)上的數(shù)字身份和真實(shí)身份統(tǒng)一,從而大大增加電子商務(wù)和電子政務(wù)系統(tǒng)的可靠性。
主要產(chǎn)品
數(shù)碼相機(jī)
人臉自動(dòng)對(duì)焦和笑臉快門技術(shù):首先是面部捕捉。它根據(jù)人的頭部的部位進(jìn)行判定,首先確定頭部,然后判斷眼睛和嘴巴等頭部特征,通過(guò)特征庫(kù)的比對(duì),確認(rèn)是人面部,完成面部捕捉。然后以人臉為焦點(diǎn)進(jìn)行自動(dòng)對(duì)焦,可以大大的提升拍出照片的清晰度。 笑臉快門技術(shù)就是在人臉識(shí)別的基礎(chǔ)上,完成了面部捕捉,然后開始判斷嘴的上彎程度和眼的下彎程度,來(lái)判斷是不是笑了。以上所有的捕捉和比較都是在對(duì)比特征庫(kù)的情況下完成的,所以特征庫(kù)是基礎(chǔ),里面有各種典型的面部和笑臉特征數(shù)據(jù)。
門禁系統(tǒng)
受安全保護(hù)的地區(qū)可以通過(guò)人臉識(shí)別辨識(shí)試圖進(jìn)入者的身份。人臉識(shí)別系統(tǒng)可用于企業(yè)、住宅安全和管理。如人臉識(shí)別門禁考勤系統(tǒng),人臉識(shí)別防盜門等。
人臉識(shí)別門禁
人臉識(shí)別門禁是基于先進(jìn)的人臉識(shí)別技術(shù),結(jié)合成熟的ID卡和指紋識(shí)別技術(shù)而推出的安全實(shí)用的門禁產(chǎn)品。產(chǎn)品采用分體式設(shè)計(jì),人臉、指紋和ID卡信息的采集和生物信息識(shí)別及門禁控制內(nèi)外分離,實(shí)用性高、安全可靠。系統(tǒng)采用網(wǎng)絡(luò)信息加密傳輸,支持遠(yuǎn)程進(jìn)行控制和管理,可廣泛應(yīng)用于銀行、軍隊(duì)、公檢法、智能樓宇等重點(diǎn)區(qū)域的門禁安全控制。
身份辨識(shí)
如電子護(hù)照及身份證。這或許是未來(lái)規(guī)模應(yīng)用。在國(guó)際民航組織已確定,從 2010年 4月 1日起,其 118個(gè)成員國(guó)家和地區(qū),必須使用機(jī)讀護(hù)照,人臉識(shí)別技術(shù)是首推識(shí)別模式,該規(guī)定已經(jīng)成為國(guó)際標(biāo)準(zhǔn)。美國(guó)已經(jīng)要求和它有出入免簽證協(xié)議的國(guó)家在2006年10月 26日之前必須使用結(jié)合了人臉指紋等生物特征的電子護(hù)照系統(tǒng),到 2006年底已經(jīng)有 50多個(gè)國(guó)家實(shí)現(xiàn)了這樣的系統(tǒng)。美國(guó)運(yùn)輸安全署( Transportation Security Administration)計(jì)劃在全美推廣一項(xiàng)基于生物特征的國(guó)內(nèi)通用旅行證件。歐洲很多國(guó)家也在計(jì)劃或者正在實(shí)施類似的計(jì)劃,用包含生物特征的證件對(duì)旅客進(jìn)行識(shí)別和管理。中國(guó)的電子護(hù)照計(jì)劃公安部一所正在加緊規(guī)劃和實(shí)施。
可在機(jī)場(chǎng)、體育場(chǎng)、超級(jí)市場(chǎng)等公共場(chǎng)所對(duì)人群進(jìn)行監(jiān)視,例如在機(jī)場(chǎng)安裝監(jiān)視系統(tǒng)以防止恐怖分子登機(jī)。如銀行的自動(dòng)提款機(jī),用戶卡片和密碼被盜,就會(huì)被他人冒取現(xiàn)金。同時(shí)應(yīng)用人臉識(shí)別就會(huì)避免這種情況的發(fā)生。通過(guò)查詢目標(biāo)人像數(shù)據(jù)尋找數(shù)據(jù)庫(kù)中是否存在重點(diǎn)人口基本信息。例如在機(jī)場(chǎng)或車站安裝系統(tǒng)以抓捕在逃案犯。
網(wǎng)絡(luò)應(yīng)用
人臉識(shí)別過(guò)程
利用人臉識(shí)別輔助信用卡網(wǎng)絡(luò)支付,以防止非信用卡的擁有者使用信用卡等。如計(jì)算機(jī)登錄、電子政務(wù)和電子商務(wù)。在電子商務(wù)中交易全部在網(wǎng)上完成,電子政務(wù)中的很多審批流程也都搬到了網(wǎng)上。而當(dāng)前,交易或者審批的授權(quán)都是靠密碼來(lái)實(shí)現(xiàn)。如果密碼被盜,就無(wú)法保證安全。如果使用生物特征,就可以做到當(dāng)事人在網(wǎng)上的數(shù)字身份和真實(shí)身份統(tǒng)一。從而大大增加電子商務(wù)和電子政務(wù)系統(tǒng)的可靠性。
娛樂(lè)應(yīng)用
人臉識(shí)別技術(shù)廣泛地應(yīng)用于日常生活中,如相機(jī)拍攝,圖片對(duì)比等,尤其近兩年來(lái),相親節(jié)目如火如荼,其中浙江電視臺(tái)的愛(ài)情連連看中的最佳夫妻像環(huán)節(jié)就利用了人臉對(duì)比技術(shù)來(lái)測(cè)試男女主人公面相的相似程度。
隨著移動(dòng)互聯(lián)網(wǎng)的崛起,一些人臉識(shí)別技術(shù)的開發(fā)者將該項(xiàng)技術(shù)應(yīng)用到娛樂(lè)領(lǐng)域中,如應(yīng)用開心明星臉等,根據(jù)人臉的輪廓,膚色,紋理,質(zhì)地,色彩,光照等特征來(lái)計(jì)算照片中主人公與明星的相似度。